기본 콘텐츠로 건너뛰기

태양은 은하속 어느 부근에 속해 있을까?

태양은 어떤 은하속 어느 부근에 속해 있을까? 오른쪽 세번째를 보면 우리 태양의 위치가 보인다. 우리 태양이 존재하는 지역은 우리 은하에 있는 오리온 자리 팔의 안쪽 가장자리이다.



우리에게 익숙한 북극성, 베텔게우스, 악튜러스, 데네브, 리겔.베가, 알파 센타우리, 알골, 시리우스와 같은 별들이 우리 태양 근처에 분포하고 있음을 알 수 있다. 중요한 것은 우리 태양의 위치가 생명의 탄생과 진화에 유리한 위치라는 것이다. 만약 우리 태양이 더 은하의 중심부에 가까웠다면 우리는 더 많은 외계에 의한 변화를 겪었어야만 할 것이다.



즉, 더 많은 소행성들과의 충돌이나 더 심한 초신성 폭팔이라던지. 블랙홀의 X선 방출.혹은 중성자별(펄서)가 내뿜는 강력한 감마선으로 인해 어려움을 겪었을 수 있다. 만약 그랬다면 생명의 탄생이 어려웠을 것이고 설사 탄생을 한다 하더라도 잦은 멸종의 위기를 맞아서 진화를 이루어낼 수 없었을 것이다.

또 우리의 태양은 별들이 밀집한 이웃 팔들과도 거리가 있어서 다소 한적한 곳에 위치하고 있다. 이 위치는 생명의 탄생이나 진화에는 최적의 위치가 되는 것이다. 그렇다면 현재보다 더 바깥쪽에 아주 한적한 곳에 위치했다면 어땠을까? 과학자들은 그 경우에도 생명의 탄생이나 진화는 지금보다 어려웠을 것으로 보고 있는데 그 이유는 다음과 같다.



생명의 탄생에 필요한 유기 물질의 기원을 현재 유력한 범종설에 의하면 외계 소행성이나 혜성에서 온것으로 보여진다. 그런데 만약 우리 태양이 너무 한적한 곳에 위치했다면 소행성이나 혜성의 섭동이 너무 적어서 지구에 유기물질의 전달이 훨씬 적었을 것이다. 그랬다면 물론 생명의 탄생은 어려웠거나 아니면 지금보다 매우 늦었을 것이다.

또한 소행성과의 충돌이나 기후변화와 같은 우주적인 변화는 지구에 생물의 멸종과 같은 위기를 가져다 주기도 했지만 이러한 위기를 극복하고 이겨내는 과정에서 생명체의 진화에 긍정적인 영향을 끼치기도 하였다. 만약 이러한 소행성 충돌, 기후변화 등의 위기가 전혀 없었다면 지구상의 생명체의 진…
최근 글

불로불사의 존재, 랍스터

생명체의 수명은 '텔로미어'가 결정한다. 텔로미어는 염색체 가닥의 양쪽 끝에 붙어 있는 꼬리로서 세포가 분열할 때마다 길이가 점점 짧아지고, 끝내 텔로미어가 다 짧아져 사라지면 생명체는 죽게된다.

 텔로미어와 관련해 가장 유명한 생명체는 '랍스터(바다가재)'이다. 랍스터는 '텔로미어'를 '복구'하는 능력을 가지고 있다. 바닷가재의 세포에 있는 '텔로머라아제'라는 효소가 '텔로미어'를 짧아지지 않게 만든다. 그래서 랍스터는 생물학적 영생을 갖고 있는 생명체이며 절대 '자연사'하지 않는다.

70년 된 랍스터
다시 말해 사고나, 다른 동물에게 잡혀 먹지 않는 이상 절대 죽지 않는다는 말이다. 또한 랍스터는 텔로머라아제가 항상 몸에 작용하고 있어 텔로미어가 파괴되는 일을 방지하므로 랍스터는 '노화'되지 않고 지속적으로 '성장'만을 평생에 걸쳐 반복하게 된다.

이쯤에서 드는 한가지 의문점이 있다. 왜 기네스북에 등재된 가장 오래 산 랍스터는 200살 밖에(?)되지 않는 것일까? 랍스터가 자연사하지 않는 생명체라면 그 이상의 세월을 산 랍스터도 발견되어야만 한다.

그 이유는 랍스터가 '자연사' 하진 않지만 '사고사'를 많이 당하기 때문이다. 랍스터는 먹이사슬에서 낮은 쪽에 위치하고 있어 다른 바다생물에게 많이 잡아 먹히는 생물이다. 

랍스터는 먹이사슬에서 낮은 쪽에 위치하고 있어 다른 바다생물에게 많이 잡아 먹히는 생물이기도 하지만 랍스터가 가장 많이 당하는 '사고사'의 원인은 '껍질'이다. '랍스터와 같은 갑각류 생물들은 껍질을 갈아입는 '탈피'를 한다.

갑각류 생물들은 탈피를 하면 껍질이 두껍고 단단해지며 커지는데 몸도 껍질에 맞게 함께 커지게 된다. 랍스터의 경우 이 같은 탈피의 과정을 거치면서 백 년정도를 살게 되면 껍질이 너무 두껍고 단단해져 자기 힘…

죽었는데 죽지 않은 별

인간을 비롯한 지구상의 모든 생명체에는 처음과 끝이 존재한다. 바로 탄생과 죽음이다. 하지만 천문학자들은 생명체에게만 탄생과 죽음이 있다고 생각하지 않는다. 그들은 '별'도 탄생과 죽음이 있다고 믿고 있다. 별은 우주공간에 흩뿌려진 '성간 물질'이라는 먼지와 티끌로부터 '탄생'한다고 생각된다. 물리학의 법칙에 따라 이들 먼지들은 질량의 중심이 되는 지점으로 모여들어 온도를 높이고, 종래에는 핵융합을 스스로 일으켜 사방으로 강렬한 빛을 쏘아보낸다. 아기가 태어난 후에 우렁찬 목소리로 우는 것처럼, 별도 주위에 강력한 빛을 내보내며 자신이 태어났음을 우주에 알린다.

별도 태어나고 죽는것 같다. 
천문학자들은 태양과 같은 별의 수명이 약 100억년 정도 되리라고 믿고 있다. 100억년.. 상상이 되는가? 인류의 평균 수명이 70세 근처임을 감안하면 우리의 생물학적 시간으로는 도저히 가늠하기 어려운 커다란 숫자다. 하지만 밤하늘을 들여다보면, 우리는 심심치 않게 별이 죽거나, 혹은 죽어가는 것을 관측할 수 있다. 아마 우리 은하에만 하더라도 최소 수천억개의 별이 있기 때문일 것이다. 이처럼 우주에서 '죽음'은 우리가 보기에 꽤나 흔한 광경이다.

다양한 모습을 지닌 행성상 성운들 
별의 죽음은 때로는 조용하고 수수하지만, 경우에 따라선 화려함의 극치를 보여주기도 한다. 태양과 비슷하거나 더 작은 별의 경우, 생애 마지막 단계에서 자신의 몸집을 크게 부풀린다. 마치 금방이라도 터질 것처럼 부풀어오르다 갑자기 파르르르 사그러든다. 작은 별들은 이렇게 조용하게 생을 마감하며 '행성상 성운'을 만들어낸다. 태양보다 커다란 별들은 화려하게 생을 마감한다. 하지만 경우에 따라 이들은 전혀 새로운 삶을 살아가기도 한다. 이들의 마지막도 역시 몸집 부풀리기에서 시작한다. 하지만 조그만 별들과는 달리, 이들은 풍선이 터지듯 모든것을 한꺼번에 주변으로 날려버린다. 터지고 남은 핵의 질량이 어느 수준 이하가 되…

고대 화성에 큰 바다 존재…물 순환도 지구와 비슷

'히파니스 계곡' 하구에 강-바다 만날 때 생기는 삼각주 존재 

화성 히파니스 계곡 [출처: NASA/JPL-Caltech]

(서울=연합뉴스) 엄남석 기자 = 고대 화성에 물이 흘렀다는 것은 이미 기정사실로 받아들여지고 있다. 하지만 단순히 물이 있었다는 것을 넘어 거대한 바다가 존재했고 물의 순환도 지구와 비슷했다는 연구결과가 나와 주목받고 있다. 

런던자연사박물관의 행성 과학자 조엘 데이비스 박사는 고대 하천으로 추정되는 '히파니스 계곡(HypanisValles)' 하구 유역의 침전물 형태를 분석한 결과, 상당한 양의 물이 거대한 물을 만나면서 형성된 것으로 보인다고 과학저널 '지구·행성과학 회보(EarthandPlanetaryScienceLetter

2만년 전 초고대문명 '에덴동산', 안데스 고원에 있었다

◆ 문명의 미스터리를 합리적으로 설명할 수는 없는가?
현대 과학기술로도 어려운 고도의 석재 가공술로 다듬어진 티와나쿠의 푸마푼쿠 유적, 남태평양의 절해고도 이스터섬에 1만 년 전 세워진 현무암 모아이 석상, 조선 초 <혼일강리역대국도지도混一疆理歷代國都之圖>에 그려진 1만 년 전 아프리카의 초거대 호수. 모두 상식적으로는 이해하기 어려운 불가사의다. 이런 미스터리들은 흔히 외계인 개입설이나 근거가 부족한 추측들로 모호하게 얼버무려지곤 한다.

인류 문명의 미스터리를 합리적으로 설명할 수는 없을까? 《아담의 문명을 찾아서》의 저자 맹성렬 교수는 전기전자공학을 전공했으며 2006년 세종대왕 특허기술상까지 수상한 중견 과학자다. 20년 전 이집트를 방문한 저자는 카이로박물관에서 단단한 돌을 정교하게 다듬고 속을 깎아내 만든 돌항아리를 보고 ‘기원전 3000년경에 경도가 높은 편암, 섬록암 같은 암석을 어떻게 이렇게 균일한 두께로 파낼 수 있었을까’ 하는 의문에 사로잡혔다.

이후 이러한 미스터리를 풀기 위해 신화학, 언어학, 고고학, 기후학, 지질학, 유전학 지식들을 섭렵하면서 4대 문명 이전 고대 고도문명의 실체를 쫓기 시작했다. 이미 20년 전 영국 논픽션 작가 그레이엄 핸콕Graham Hancock은 고대 유적들과 신화들을 바탕으로 초고대문명의 실체를 추적하는 내용의 세계적인 베스트셀러 《신의 지문Fingerprints Of the Gods》을 발표한 바 있다.

저자는 이 책의 내용이 너무 추상적이며 학술적인 기반이 약하다고 판단하여 좀 더 확실한 근거들을 제시한다. 그리고 결론 부분에서 차별화를 시도한다. 핸콕은 오래 전에 존재했던 초고대문명이 남극 대륙의 얼음 밑으로 묻혀버렸다고 결론지었는데, 이 결론에 의구심이 든 저자는 직접 초고대문명의 성도聖都이자 신들의 아지트인 에덴을 추적했고 20년 동안의 노력의 결과로 이 책이 탄생했다.



◆ 4대 고대문명들의 모체문명을 찾아서

저자가 초고대문명에 대한 관심을 갖게 된 것은 고대 이집트문명과…

허블 이후 차세대 우주망원경

2021년 임무 종료 예정인 허블 우주망원경을 대신 할 차세대 우주 망원경(적외선), 제임스웹!

그런데 가시광영역대를 보는 허블 망원경과 달리 제임스웹은 적외선 망원경이다. 일반인들에겐 가시영역대의 사진들이 좋지만 천문학 연구하는 사람들에게는 쓸모 없다고 한다.

적외선, x-ray, 감마, 이러한 전파망원경들이 더 연구하기 편리하다고 하고, 우리가 흔히 아는 허블의 딥 필드도 오리지널 사진은 흑백사진이다. 그 흑백사진에 따로 수신받은 색깔 데이터를 넣어 가공한거라고 한다.

그렇다면, 제임스웹의 성능은?













우리는 이제 Into the Unknown (미지의 우주 속으로) 들어가고 있다.  아래의 영상을 확인하자.

블랙홀과 홀로그램 다중우주론

가끔씩 우리들은 '나'의 정체성에 대해 묻곤 한다. '나'라는 것은 그저 분자들 끼리의 결합일 뿐인데 어떻게 정체성을 가질까? 혹시 우리 인류는 인류 위의 전지전능한 무언가가 만든 프로그램 속에서 돌아다니는 전기적인 신호이지 않을까?

 이번에 소개할 우주론이 바로 이 물음에 대한 답을 어느정도 제시해 줄 수 있는 이론이야. 바로 홀로그램우주론이지. 사실 위의 질문은 수천년 전, 유명한 철학자 플라톤에서 부터 시작하는데, 그는 우리가 지각하는 것이 실체의 극히 일부이며, 진짜 실체는 우리가 인지할 수 있는 한계를 넘어선 곳에 훨씬 다양한 형태로 존재한다고 결론을 내렸다.



 실제로 우리 눈에 보이는 것은 실체가 3차원 공간에 투영된 영상일지도 모른다. 영화에 나오는 홀로그램처럼 2차원에 놓인 정보가 3차원에 투영되어 입체적으로 보이는것처럼 말이다. 사실 홀로그램 우주론은 단순히 상상만으로 탄생한 개념이 아니다. 그 생각의 출발점은 홀로그램과는 전혀 상관없을 것처럼 보이는 천체에서부터 시작한다. 아인슈타인의 일반상대성이론이 발표된 당시, 그 이론을 이해한 사람은 손에 꼽을정도로 적었다. 그중 한명이 바로 칼 슈바르츠실트라는 과학자였다.


 칼 슈바르츠실트
 그는 일반상대성이론이 발표된 후 몇 개월도 안돼서 그 이론을 꿰찼고, 아인슈타인조차도 근사적으로밖에 구할 수 없었던 아인슈타인 방정식의 해를 최초로 구하는 데 성공한다. 이 해를 슈바르츠실트 해라고 부른다. 슈바르츠실트의 해를 간단히 설명하자면, 우리가 익히 들었을 법한 우주의 시공간에 관한 내용인데, 우주공간에 질량을 지닌 물체를 가져다 놓으면, 그 물체는 그 물체 주변의 공간을 왜곡시킨다.


 헌데 슈바르츠실트 해는 이런 기본적인 시공간의 성질 외에도, 특이한 성질이 하나 더 있었는데, 만약 이 천체의 질량이 아주 작은 영역에 밀집되어있다면 그곳에 구멍이 형성된다는 점이다.


 따라서 주변 공간이 극단적으로 휘게 된다. 무엇이건…